D(t)=-16t^2+400t

Simple and best practice solution for D(t)=-16t^2+400t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for D(t)=-16t^2+400t equation:



(D)=-16D^2+400D
We move all terms to the left:
(D)-(-16D^2+400D)=0
We get rid of parentheses
16D^2-400D+D=0
We add all the numbers together, and all the variables
16D^2-399D=0
a = 16; b = -399; c = 0;
Δ = b2-4ac
Δ = -3992-4·16·0
Δ = 159201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{159201}=399$
$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-399)-399}{2*16}=\frac{0}{32} =0 $
$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-399)+399}{2*16}=\frac{798}{32} =24+15/16 $

See similar equations:

| (a+2)÷2=1 | | 2(3y-2)=-16 | | 2b+(-7)=5 | | -6x+13=2x-11 | | a/31=19 | | 2/4v=9 | | 117+3x+27=180 | | X/27=4x | | `-3(4x+3)+4(6x+1)=43` | | 4+i/8=8 | | 3x-1=5x+51 | | 25=9-3.2b | | 2x–5=3x+17 | | 8(x-1)-3x=12x-36 | | 6+8v=78 | | 1/x-1+1/2=2/x^2-1 | | 2/3x-30=-2 | | 3x+25=-2x-4 | | x.2x-5=19 | | x-17=-75 | | n=16=-9 | | 9x2-11x=0 | | 80=7.50x+25 | | (4-8i)+(-2-6i)= | | 12.5x-10.2=3(2.5x+4.5)-6 | | 67-30=82-k | | 6x+36=2x-6 | | 2(x-6)^2=0 | | 4(7-15x)=-92 | | ^0.04/x=1 | | 4y-(2y+3)=7 | | 3x-4(2.5x-8)=-7x-32 |

Equations solver categories